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Changepoint Detection

A changepoint is the position in a time series where a part of the structure
changes as illustrated in Figure 1.

Whether a changepoint occurs can be detected using a Likelihood Ratio Test.
For this test, we derive a detection boundary (introduced by Cai et al., 2011),
seperating detectable from undetectable changes, in a simulation study.

Structure of simulated data:

before the change: y
iid∼ N(0, 1)

after the change: y
iid∼ N(µ, σ2)

with µ 6= 0 and/or σ2 6= 1

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 1: A time series exhibiting a change at t4

Likelihood Ratio Test

The Likelihood Ratio Test (LRT) can be seen as a binary classifier differentiating
between two hypotheses (Eckley et al., 2011).

H0 : no changepoint

H1 : one changepoint

The LRT compares the likelihood without a changepoint to the highest likelihood
obtainable with a changepoint. The latter is found by trying all points in time as
changepoints and taking the maximum likelihood for these:

λ = 2

max
τ

[
log p(y1:τ |θ̂1) + log p(yτ+1:n|θ̂2)

]
︸ ︷︷ ︸

Log-Likelihood with changepoint τ

− log p(y1:n|θ̂)︸ ︷︷ ︸
Log-Likelihood without

a changepoint


The null hypothesis is rejected if λ surpasses a given threshold c ∈ R+.

Detectability

We define a detectable change as follows: If c is chosen such that the true
positive rate (empirical power) is 80 %, the resulting false positive rate (empirical
type I error) is at most 5 %.

This corresponds to the ROC curve, which gives
the false and true positive rates for every c ,
passing through or above the point (0.05, 0.8).

Here, we chose points of interest for the detection
boundary as points where the ROC curve passes
this point with a distance < 0.01 (the boundary
region) as illustrated in Figure 2.

The detection boundary can then be estimated by
the median of several of these points of interest.
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Figure 2: ROC curve example

Surrogate Model Bayesian Optimisation

As 1000 time series were sampled and tested for one ROC curve, evaluating the
distance to the ROC curve is computationally expensive.
In order to efficiently find changes where the ROC curve goes through the
boundary region, Surrogate Model Bayesian Optimisation was used.

Surrogate modelling (depicted in Figure 3):
1 Evaluate function k times in random positions
2 Fit a surrogate model through current points
3 Use model to determine next evaluation point
4 Considering the new point, jump to 2 unless

maximum number of iterations is reached

point evaluations
surrogate model
next evaluation point

Figure 3: Example of a surrogate model

Because of their versatility, we used Gaussian Processes as a surrogate model. The
next point to evaluate (Step 3) was determined by the probability of improvement,
because of the the convex shape of the function of interest.

Univariate Analysis & Results

In the univariate case, we investigated the influence of the following three variables
on detectability:

size of mean change size of variance change location of changepoint

The resulting surface separating detectable (above the boundary) from
undetectable changes (below the boundary) is shown in Figure 4.

variance ch
ange0123

4location

0.1 0.2 0.3 0.4 0.5

m
ean change 1

2

3

variance change
01234

location

0.1
0.2
0.3
0.4
0.5

m
ean change 1

2
3

Figure 4: The detection boundary for the univariate case shown from different angles

Multivariate Analysis & Results

In the multivariate case, we investigated the influence of the following three
variables on detectability:

number of time series size of summed mean changes sparsity of mean changes

The resulting surface separating detectable (above the boundary) from
undetectable changes (below the boundary) is shown in Figure 5.
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Figure 5: The detection boundary for the multivariate case shown from different angles

Future Work

More dimensions of interest can be investigated:

univatiate case: length of time series

multivariate case: length of time series, size of variance change, and location

Additionally, both cases could consider multiple changepoints per time series.

In order to make this computationally feasible, using a stochastic surrogate model
(e. g. stochastic Gaussian Processes) in the Bayesian optimisation is advisable as it
handles the randomness implicitly. Consequently, the optimisation does not have
to be repeated to take the median.

A stochastic surrogate model could also improve the results obtained here,
especially in the multivariate case, as it directly estimates the true minimum of the
stochastic function.
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