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Background

According to Age UK, as of 2018:

There are more than 11.9 million people aged 65+
in the UK.

3.8 million of these individuals are living alone.

50% of those 3.8 million individuals have 3 or more
long term health conditions.

Howz is a software company who have designed an
award winning home care kit with smart sensors to
help people live independently for longer.

With permission, the data from the sensors can be
tracked by carers or the NHS via a mobile app.The
app should also alert the user when it detects a
change in routine.

This project introduces some methodology for
modeling Howz sensor readings to form criteria for
defining a change in routine.

The data set

Our data comes in the form of pairs of the form
(S , t) where S is the sensor that went off and t is
the timestamp for when it went off.

We use 4 different sensors- main door opened, main
door closed, microwave and landing. The data spans
253 days.
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Figure 1: Plot of sensor observations by time of day.

Fitting a basic Poisson model

We first fit a time homogeneous Poisson point
process model for each sensor because it is easy to fit:

1 Split the 253 day data into training data (first 127
days) and test data (the final 126).

2 Calculate the mean number of observations per day
in the training data.

3 Assume the 253 day data is realisations of a
Poisson random variable with mean in step 2.

4 Find a two sided 95% confidence interval for the
number of sensor realisations per day.

5 Check the proportion of test data that falls outside
this confidence interval.

We also fit models where we separated the data by
day, by weekday/weekend and a model where we
updated the mean each day.

The results can be found in table 2.

Separating the data by time of day

The basic Poisson model does not account for
density of sensor observation throughout a day.
Figure 1 shows that sensor observations are not
uniformly distributed throughout a typical day.

We tackle this by modeling the density of each sensor
by time of day and then using k-means clustering:
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Figure 2: Density of each sensor by using first 127 days.

Determining number of clusters

The Elbow method looks at the total within sum of
squares (WSS) as a function of the number of
clusters. We choose a number of clusters so that
adding another cluster doesn’t improve the total
WSS by much. Applying this idea gives:

Sensor
Landing Door close Door Open Microwave

#clusters 4 5 5 3

Table 1: Number of clusters we should fit on each sensor using
the Elbow method.

Maximum likelihood estimation

We now fit a time in-homogeneous Poisson process
by fitting a different constant to each cluster. The
constant is determined using Maximum Likelihood
Estimation:

Suppose we have a sample of size n,
x = {x1, x2, ..., xn}, and we are trying to fit m
clusters, where cluster i ranges from time ti−1 to ti ,
has ki observations and an intensity λi .
Then if we let

θ : [0 : T ]→ R≥0

be the intensity function, the log likelihood is

`(θ|x) = −
∫ T

0

θ(x)dx +
n∑

i=1

log(θ(xi)).

= −λ1t1 − λ2(t2 − t1)− ...− λm(tm − tm−1)

+k1 log(λ1) + k2 log(λ2) + ... + km log(λm).

.
By solving the system

∂`

∂λ1
=

∂`

∂λ2
= ... =

∂`

∂λm
= 0

We get that for i ∈ {1, ...,m},

λ̂i =

{
ki
ti

if i = 1,
ki

ti−ti−1
if i 6= 1,

In each case, this is telling us to set the parameter to

# of observations in the time interval

length of time interval
.

Results

The parameter estimates are as we would expect.
Fitting this to the door opening sensor gives:

λ1 = 0.05461629 λ2 = 0.31076058 λ3 = 0.49900114 λ4 =  0.49450744 λ5 =  0.36322214
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Figure 3: Density and rates obtained the first 127 days.

To model the data using an in-homogeneous Poisson
process,

Split the 253 day data into training data (first 127
days) and test data (last 126 days).

Use k-means on the training data and fit a
constant to each cluster (as in figure 3).

For each element in the test data, first assign it a
cluster based on the time of day.

Apply an analogous algorithm to the basic model.

The table below summarises the results of applying
all of the algorithms discussed thus-far:

Sensor

Door close Door open Microwave Landing

Simple mean 19% 19% 2% 48%

Moving mean 20% 20% 2% 42%

weekend/weekday 22% 19% 2% 44%
Method

Separating by day 24% 24% 2% 52%

K-means clustering 5% 5% 1% 21%

Table 2: Percentage of observations outside the confidence
interval (rounded to nearest %). Black represents homogeneous
models and red represents the in-homogeneous model.

Conclusion

We have come up with a fairly accurate model that
allows us to predict what we expect to see on a
cluster by cluster basis.

Our method flags days with observations either too
high or too low. In reality we should not be
alarmed if there is a lot of movement- indeed this
can be a good sign. Removing this condition nearly
halves the error on every sensor.

The algorithm runs very quickly (few seconds) so
can be used in real time.

Further work

Some ideas to improve our current method include:

Fitting higher degree polynomials or parametric
functions to each cluster. This may improve the
accuracy of our models and reduce errors.

Looking at consecutive sensor readings and how we
can incorporate them into the model.
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